
Simple Efficient Load Balancing Algorithms for
Peer-to-Peer Systems

David R. Karger
MIT Computer Science and Artificial Intelligence

Laboratory
Cambridge, MA 02139, USA

karger@csail.mit.edu

Matthias Ruhl
IBM Almaden Research Center

San Jose, CA 95120, USA

ruhl@almaden.ibm.com

ABSTRACT
Load balancing is a critical issue for the efficient operation of peer-
to-peer networks. We give two new load-balancing protocols whose
provable performance guarantees are within a constant factor of op-
timal. Our protocols refine the consistent hashingdata structure
that underlies the Chord (and Koorde) P2P network. Both preserve
Chord’s logarithmic query time and near-optimal data migration
cost.

Consistent hashing is an instance of the distributed hash table
(DHT) paradigm for assigning items to nodes in a peer-to-peer sys-
tem: items and nodes are mapped to a common address space, and
nodes have to store all items residing closeby in the address space.

Our first protocol balances the distribution of the key address
spaceto nodes, which yields a load-balanced system when the DHT
maps items “randomly” into the address space. To our knowl-
edge, this yields the first P2P scheme simultaneously achieving
O(logn) degree, O(logn) look-up cost, and constant-factor load
balance (previous schemes settled for any two of the three).

Our second protocol aims to directly balance the distribution of
itemsamong the nodes. This is useful when the distribution of
items in the address space cannot be randomized. We give a simple
protocol that balances load by moving nodes to arbitrary locations
“where they are needed.” As an application, we use the last protocol
to give an optimal implementation of a distributed data structure for
range searches on ordered data.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications—load bal-
ancing; F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
Peer-to-peer systems, load balancing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04,June 27–30, 2004, Barcelona, Spain.
Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

1. INTRODUCTION
Peer-to-peer (P2P) systems are a current research focus in com-

puter systems and networking. Such systems are attractive in their
potential to harness the vast distributed computation and storage
resources in today’s networks, without need for complex and sen-
sitive centralized control.

A core problem in peer-to-peer systems is the distribution of
items to be stored or computations to be carried out to the nodes
that make up the system. A particular paradigm for such alloca-
tion, known as the distributed hash table (DHT), has become the
standard approach to this problem in research on peer-to-peer sys-
tems [7, 9, 12, 13, 16, 17, 21]. A distributed hash table interface
implements a hash function that maps any given item to a particu-
lar machine (“bucket”) in the peer-to-peer network. For example,
Chord [21] uses Consistent Hashing [8] to assign items to nodes:
items and nodes are pseudo-randomly hashed to a circular address
space (represented by the interval [0,1] with addresses 0 and 1 iden-
tified), and a node stores all items whose addresses fall between the
node’s own address and the address of the node preceeding it in the
address space.

DHTs differ from traditional hash tables in two key ways: First,
in addition to the insertion and deletion of items, DHTs must sup-
port the insertion and deletion of buckets: as machines join and
leave the network, items must be migrated to other machines and
the hash function revised to reflect their new location. Second,
some kind of routing protocolis usually necessary: since it is not
feasible in a P2P system for every node to maintain up-to-date
knowledge of all other nodes in the system, an item is looked up
(or inserted) by following a sequence of routing hops through the
peer-to-peer network.

A large number of algorithms have been proposed (and imple-
mented in systems) [16, 21, 9, 17, 13, 7] to provide distributed
hash table functionality. The majority of them require each node
of an n-node P2P system to keep track of only O(logn) “neighbor
nodes” and allow the machine responsible for any key to be looked
up and contacted in O(logn) routing hops. Recently some variants
have been proposed [12, 7] that support O(logn)-hop lookups with
only constant neighbor degree; this is theoretically optimal but may
be undesirable in practice in light of fault-tolerance considerations.

1.1 Load Balancing
An important issue in DHTs is load-balance—the even distribu-

tion of items (or other load measures) to nodes in the DHT. All
DHTs make some effort to load-balance, generally by (i) random-
izing the DHT address associated with each item with a “good
enough” hash function and (ii) making each DHT node responsi-
ble for a balanced portion of the DHT address space. Chord is

36

a prototypical example of this approach: its “random” hashing of
nodes to a ring means that each node is responsible for only a small
interval of ring address space, while the random mapping of items
means that only a limited number of items land in the (small) ring
interval owned by any node.

This attempt to load-balance can fail in two ways. First, the typ-
ical “random” partition of the address space to nodes is not com-
pletely balanced. Some nodes end up responsible for a larger por-
tion of the addresses and thus receive a larger portion of the ran-
domly distributed items. Second, some applications may preclude
the randomization of data items’ addresses. For example, to sup-
port range searching in a database application the items may need
to be placed in a specific order, or even at specific addresses, on
the ring. In such cases, we may find the items unevenly distributed
in address space, meaning that balancing the address space among
nodes does not balance the distribution of items among nodes. We
give protocols to solve both of the load balancing challenges just
described.

1.1.1 Address-Space Balancing
In general, distributed hash tables do not offer load balance quite

as good as standard hash tables. A typical standard hash table par-
titions the space of possible hash-function values evenly over the
buckets; thus, assuming the hash function is “random enough” and
sufficiently many keys are inserted, those keys will be evenly dis-
tributed among the buckets. Current distributed hash tables do not
evenly partition the address space into which keys get mapped;
some machines get a larger portion of it. Thus, even if keys are
numerous and random, some machines receive more than their fair
share, by as much as a factor of O(logn) times the average.

To cope with this problem, most DHTs use virtual nodes: each
real machine pretends to be several distinct machines, each partic-
ipating independently in the DHT protocol. The machine’s load is
thus determined by summing over several virtual nodes’, creating
a tight concentration of (total) load near the average. As an exam-
ple, the Chord DHT is based upon consistent hashing [8], which
requires O(logn) virtual copies to be operated for every node.

Virtual nodes have drawbacks. Most obviously, the real ma-
chine must allocate space for the data structures of each virtual
node; more virtual nodes mean more data structure space. How-
ever, P2P data structures are typically not that space-expensive (re-
quiring only logarithmic space per node) so multiplying that space
requirement by a logarithmic factor is not particularly problematic.
A much more significant problem arises from network bandwidth.
In general, to maintain connectivity of the network, every (virtual)
node must frequently ping its neighbors, make sure they are still
alive, and replace them with new neighbors if not. Running multi-
ple virtual nodes creates a multiplicative increase in the (very valu-
able) network bandwidth consumed for maintenance.

Below, we will solve this problem by arranging for each node
to activate only oneof its O(logn) virtual nodes at any given time.
The node will occasionally check its inactive virtual nodes, and
may migrate to one of them if the distribution of load in the system
has changed. Since only one virtual node is active, the real node
need not pay the original Chord protocol’s multiplicative increase
in space and bandwidth costs. As in the original Chord protocol,
our scheme gives each real node only a small number of “legiti-
mate” addresses on the Chord ring, preserving Chord’s (limited)
protection against address spoofing by malicious nodes trying to
disrupt the routing layer. (If each node could choose an arbitrary
address, then a malicious node aiming to erase a certain item could
take responsibility for that item’s key and then refuse to serve the
item.)

1.1.2 Item Balancing
A second load-balancing problem arises from certain database

applications. A hash table randomizes the order of keys. This is
problematic in domains for which order matters—for example, if
one wishes to perform range searches over the data. This is one of
the reasons binary trees are useful despite the faster lookup perfor-
mance of hash tables. An order-preserving dictionary structure can-
not apply a randomized (and therefore load balancing) hash func-
tion to its keys; it must take them as they are. Thus, even if the
address space is evenly distributed among the nodes, an uneven
distribution of the keys (e.g., all keys near 0) may lead to all load
being placed on one machine.

In our work, we develop a load balancing solution for this prob-
lem. Unfortunately, the “limited assignments” approach discussed
for key-space load balancing does not work in this case—it is easy
to prove that if nodes can only choose from a few addresses, then
certain load balancing tasks are beyond them. Our solution to this
problem therefore allows nodes to move to arbitrary addresses;
with this freedom we show that we can load-balance an arbitrary
distribution of items, without expending much cost in maintaining
the load balance.

Our scheme works through a kind of “work stealing” in which
underloaded nodes migrate to portions of the address space occu-
pied by too many items. The protocol is simple and practical, with
all the complexity in its performance analysis.

Our protocol can also be used to balance weighted items, where
the weight of an item can for example reflect its storage size, or its
popularity and the resulting bandwidth requirements.

1.2 Our Contributions
In this paper we give two distributed load-balancing schemes for

data storage applications in P2P networks.
First, in Section 2, we give a protocol that improves consistent

hashing in that every node is responsible for a O(1/n) fraction
of the address space with high probability, without using virtual
nodes. The protocol is dynamic, with an insertion or deletion caus-
ing O(log logn) other nodes to change their positions. Each node
has a fixed set of O(logn) possible positions that it chooses from.
This set only depends on the node itself (computed e.g. as hashes
of the node IP address), impeding malicious spoofing attacks on
the network. Another nice property of this protocol is that the “ap-
propriate” state of the system (i.e., which virtual nodes are active),
although random, is independentof the history of item and node
arrivals and departures. This Markovian property means that the
system can be analyzed as if it were static, with a fixed set of nodes
and items; such analysis is generally much simpler than a dynamic,
history-dependent analysis.

Combining our load-balancing scheme with the Koorde routing
protocol [7], we obtain a protocol that simultaneously offers (i)
O(logn) degree per real node, (ii) O(logn/ log logn) lookup hops,
and (iii) constant factor load balance. Previous protocols could
achieve any two of these but not all three—generally speaking,
achieving property (iii) required operating O(logn) virtual nodes,
which pushed the degree to O(log2 n) and therefore failed to achieve
property (i).

A second interpretation of our results can be given independent
of P2P systems. Consistent hash functions [8] are useful general-
ized hash functions assigning items to buckets in a dynamic fashion
that allows both items and buckets to be inserted and deleted dy-
namically. The initial implementation of consistent hashing, how-
ever, required O(nlogn+ N) space to store N items in n buckets.
Our new scheme reduces the necessary space allocation to the op-
timal O(n+ N) space, at the cost of slower bucket insertions and

37

deletions (the insertion or deletion of a node causes O(log logn)
buckets to change in expectation, compared to O(1) buckets in the
worst case for the original version of consistent hashing). It is an in-
teresting open problem to optimize space without affecting bucket
insertion and deletion time.

In the second part of our work, we consider arbitrary distribu-
tions of keys, which forces us to allow nodes to move to arbitrary
addresses. In Section 3, we give a dynamic protocol that changes
nodes’ addresses in order to achieve load balance. The protocol is
randomized, and relies on the underlying P2P routing framework
to be able to contact “random” nodes in the system. We show that
the amortized rebalancing costs in terms of number of items moved
are O(N/n) for a node insertion or deletion (where N is the number
of items in the system), and O(1) for the insertion or deletion of an
item. The protocol does not require the knowledge of N or n for
operation, and it can be extended to items with different weights or
storage costs.

In particular, this load balancing protocol can be used to store
ordered data, such that the items are not hashed, but mapped to the
DHT address space in an order-preserving way. Every node then
stores the items falling into a continuous segment of that ordering.
In Section 3.2.4, we describe how this can be used to implement
a range-search data structure, where given items a and b, the data
structure is to return all items x stored in the system that satisfy
a≤ x≤ b. We give the first such protocol that achieves an O(logn+
Kn/N) query time (where K is the size of the output).

We design our solutions in the context of the Chord (and Ko-
orde) DHT [21] but our ideas seem applicable to a broader range
of DHT solutions. Chord [21] uses Consistent Hashing to assign
items to nodes, achieving key-space load balance using O(logn)
virtual nodes per real node. On top of Consistent Hashing, Chord
layers a routing protocol in which each node maintains a set of
O(logn) carefully chosen “neighbors” that it uses to route lookups
in O(logn) hops. Our modifications of Chord are essentially mod-
ifications of the Consistent Hashing protocol assigning items to
nodes; we can inherit unchanged Chord’s neighbor structure and
routing protocol. Thus, for the remainder of this paper, we ignore
issues of routing and focus on the assignment problem.

1.3 Related Work
While much research has been done on routing in P2P networks,

work on efficient load balancing and complex queries in P2P is
only in its beginning stages. Most structured P2P systems simply
assume that items are uniformly distributed on nodes.

Two protocols that achieve near-optimal load-balancing without
the use of virtual nodes have recently been given [1, 14]. Our
scheme improves upon them in three respects. First, in those pro-
tocols the address assigned to a node depends on the rest of the
network, i.e. the address is not selected from a list of possible ad-
dresses that only depend on the node itself. This makes the pro-
tocols more vulnerable to malicious attacks. Second, in those pro-
tocols the address assignments depend on the construction history,
making them harder to analyze. Third, their load-balancing guar-
antees are only shown for the “insertions only” case, while we also
handle deletions of nodes and items.

Work on load balancing by moving items can be found in work
of Rao et al. [15]. Their algorithm is similar to ours, however it
only works when the set of nodes and items are fixed (i.e. with-
out insertions or deletions), and they give no provable performance
guarantees, only experimental evaluations.

A theoretical analysis of a similar protocol was given by Anag-
nostopoulos, Kirsch and Upfal [2]. In their setting, however, items
are assumed to be jobs that are executed at a fixed rate, i.e. items

disappear from nodes at a fixed rate. Moreover, they analyze the
average wait time for jobs, while we are more interested in the total
number of items moved to achieve load balance.

Complex queries such as range searches are also an emerging
research topic for P2P systems [5, 6]. An efficient range search data
structure was recently given by Aspnes and Shah [3]. However, that
work does not address the issue of load balancing the number of
items per node, making the simplifying assumption that each node
stores only one item. In this setting, the lookup times are O(logN)
in terms of the number of items N, and not in terms of the number
of nodes n. Also, O(logN) storage is used per data item, meaning
a total storage of O(N logN), which is typically much worse than
O(N+nlogn).

In recent independent work, Ganesan and Bawa [4] consider a
load balancing scheme similar to ours and point out applications
to range searches. However, their scheme relies on being able to
quickly find the least and most loaded nodes in the system. It is not
clear how to support this operation efficiently, and without creating
heavy network traffic for these nodes with extreme load.

1.4 Notation
In this paper, we will use the following notation.

n is the number of nodes in system
N is the number of items stored in system (usually N � n)
�i is the number of items stored at node i
L = N/n is the average (desired) load in the system

Whenever we talk about the address space of a P2P routing protocol
(such as Chord), we assume that this space is normalized to the
interval [0,1]. We further assume that the addresses 0 and 1 are
identified, i.e. that the address space forms a ring.

2. ADDRESS-SPACE BALANCING
In this section we give a protocol that improves consistent hash-

ing in that every node is responsible for a O(1/n) fraction of the
address space with high probability (whp), without use of virtual
nodes. This improves space and bandwidth usage in Chord by a
logarithmic factor over traditional consistent hashing. The proto-
col is dynamic, with an insertion or deletion causing O(loglogn)
other nodes to change their positions. Each node has a fixed set
of O(logn) possible positions (called “potential nodes”); it chooses
exactly one of those potential nodes to become activeat any time
— this is the only node that it actually operates. A node’s set of
potential nodes depends only on the node itself (their addresses
computed e.g. as hashes h(i,1),h(i,2), . . . ,h(i,clogn) of the node
identifier i), making attacks on the network more difficult.

We denote the address (2b+1)2−a by 〈a,b〉, where a and b are
integers satisfying 0 ≤ a and 0 ≤ b < 2a−1. This yields an un-
ambiguous notation for all addresses with finite binary representa-
tion. We impose an ordering ≺ on these addresses according to the
lengthof their binary representation (breaking ties by magnitude of
the address). More formally, we set 〈a,b〉 ≺ 〈a′,b′〉 iff a < a′ or
(a = a′ and b < b′). This yields the following ordering:

0 = 1 ≺ 1
2
≺ 1

4
≺ 3

4
≺ 1

8
≺ 3

8
≺ 5

8
≺ 7

8
≺ 1

16
≺ . . .

We are now going to describe our protocol in terms of the “ideal”
state it wants to achieve.

Ideal state: Given any set of active nodes, each (possibly inactive)
potential node “spans” a certain range of addresses between
itself and the succeeding active node on the address ring.
Each real node has activated the potential node that spans
the minimal (under the ordering ≺) address.

38

Our protocol consists of the simple update rule that any node for
which the ideal state condition is not satisfied, instead activates the
potential node for which the condition is (locally) satisfied. In other
words, each node occasionally determines which of its O(logn)
potential nodes spans the smallest address (according to ≺). The
node then activates that particular potential node.

We will now prove that such a system has a unique ideal state.
This shows that the protocol is Markovian, i.e. that the resulting
state does not depend on the construction history, and there is no
bias introduced by a sequence of insertions and deletions. This is
similar to treaps [20] where items are inserted with random priori-
ties, yet the result does not depend on the order of the insertions.

Theorem 1 The following statements are true for the above pro-
tocol, if every node has clogn potential addresses that are chosen
Ω(logn)-independently at random.

(i) For any set of nodes there is a unique ideal state.

(ii) Given any starting state, the local improvements will eventu-
ally lead to this ideal state.

(iii) In the ideal state of a network of n nodes, whp all neighboring
pairs of active nodes will be at most(4+ ε)/n apart, for any
ε ≤ 1/2 with c≥ 1/ε2. (This bound improves to(2+ε)/n for
very smallε.)

(iv) Upon inserting or deleting a node into an ideal state, in ex-
pectation at most O(loglogn) nodes have to change their ad-
dresses for the system to again reach the ideal state.

2.1 Proof of Theorem 1
The unique ideal state can be constructed as follows. The po-

tential node immediately preceding address 1 will be active, since
its real-node owner has no better choice and cannot be blocked by
any other node from spanning address 1. That real node’s other
potential nodes will then be out of the running for activation. Of
the remaining potential nodes, the one closest to address 1/2 will
become active for the same reason, and so on. We continue in this
way down the ≺-ordered list of addresses. This greedy process
clearly defines the unique ideal state, showing claim (i).

We will show claim (ii) by arguing that every local improve-
ment reduces the distance from the current state to the ideal state
(with “distance” appropriately defined). For this, let A be the set
of addresses with finite binary expansion, i.e. the addresses in the
ordering ≺. Fix the set X of active nodes in the system. We define
a function fX : A → (R∪∞) as follows. For each address a ∈ A,
consider the active node x that spans the address interval contain-
ing a. If that interval does not contain any smaller (in the sense of
≺) address than a, then let fX(a) be the address distance between x
and a, otherwise let fX(a) := ∞.

Two different sets X and Y of active nodes will lead to different
functions fX and fY. Consider the lexicographic ordering on all
of these functions, i.e. functions are compared by first considering
their relative value at 0, then at 1

2 , 1
4 , 3

4 , and so on in the order of ≺,
until the first unequal value determines the relative ordering of the
functions. It is then straightforward to show (cf. [18, Lemma 4.5])
that

(a) among all choices of active nodes, the ideal state leads to the
smallest possible function fX under this lexicographic order-
ing, and

(b) every local improvement makes the function fX become smaller
(i.e. reduces the distance to the ideal state).

Combined with the facts that there is only one ideal state, i.e. only
one state in which no local improvement is possible (claim (i)),
and that there is only a finite number of potential-node choices for
active nodes, this shows claim (ii).

To prove the remaining two claims, we will assume for simplicity
that the potential nodes’ addresses are chosen independently at ran-
dom. But just as with the original consistent hashing scheme [10],
our results continue to hold for Ω(logn)-wise independent choices
of potential addresses. This follows by a standard application of re-
sults of Chernoff [19]. In our proof, we will use a Chernoff bound
to show that each address interval of them form [a− ε/n,a] will
whp contain at least one potential node. This can be rephrased as
a standard balls-and-bins experiment, to which the results of Cher-
noff [19] directly apply.

To prove claim (iii), recall how we constructed the ideal state for
claim (i) above by successively assigning nodes to increasing ad-
dresses in the order ≺. In this process, suppose we are considering
one of the first (1− ε)n addresses in ≺. Consider the interval I of
length ε/n preceding this address in the address space. Since this is
one of the first (1− ε)n first addresses, at least εn of the real nodes
have not yet been given a place on the ring. Among the cεnlogn
potential positions of these nodes, with high probability one will
land in the length-ε/n interval I under consideration. So whp, for
each of the first (1−ε)n addresses in the order ≺, the potential node
spanning that address will land within distance ε/n preceding the
address. Since these first (1−ε)n addresses break up the unit circle
into intervals of size at most 4/n, claim (iii) follows. Note that for
very small ε, the first (1− ε)n addresses actually break up the unit
circle in intervals of size 2/n, which shows the additional claim.

For claim (iv), it suffices to consider a deletion since the sys-
tem is Markovian, i.e. the deletion and addition of a given node
are symmetric and cause the same number of changes. Consider
what happens when a node assigned to some address 〈a0,b0〉 gets
deleted from the network. Then some node previously assigned to
an address 〈a1,b1〉 � 〈a0,b0〉 may get reassigned to 〈a0,b0〉, caus-
ing some node previously assigned to 〈a2,b2〉 � 〈a1,b1〉 to move
to 〈a1,b1〉, and so on. This results in a linear sequence of changes
that, when complete, have produced the ideal state. Since nodes
only move to smaller (in terms of ≺) addresses, the number of
movements is clearly finite. We will now show that this number
is O(loglogn) in expectation.

Let ni be the number of nodes assigned to active addresses 〈a′,b′〉
with 〈a′,b′〉 � 〈ai ,bi〉. Note that the node moving to address 〈ai ,bi〉
is uniformly random among these ni nodes, thus ni+1 ≤ ni/2 with
probability at least 1/2. Since this is true for all i, whp O(logn)
movements suffice to achieve logn halvings, which will reduce ni
to zero. This shows that whp O(logn) nodes have to change their
addresses upon the deletion or insertion of a node.

However, the exchange sequence can also stop before ni is re-
duced to zero. This happens if none of the ni nodes has a potential
position between address 〈ai ,bi〉 and the active node preceeding it.
Since we assumed the system to be load-balanced, the distance be-
tween 〈ai ,bi〉 and the preceeding active node is O(1/n). The gap
therefore contains � = O(logn) potential nodes whp. The probabil-
ity that none of the � potential nodes in the gap is owned by any of
the ni active nodes that would want to move to them is(

1− ni

n

)� ≈ exp(−� ·ni/n).

This probability becomes a constant when n/ni = Ω(�), i.e. ni =
O(n/ logn), at which point we perform in expectation only a con-
stant number of additional moves. By the above discussion, ni
halves in every step in expectation, so it takes only log(n

O(n/ logn))=

39

O(log logn) movements in expectation to get ni = O(n/ logn). Thus
the expected number of moves in total is O(log logn) + O(1) =
O(log logn). �

2.2 Discussion
Intuitively, the protocol achieves load-balance for two reasons.

First, since the nodes prefer to be near an address that is small in
the ordering ≺, there will be active nodes close to almost all small
(according to ≺) addresses. Second, the addresses in any beginning
segment of the ordering ≺ (almost) uniformly subdivide the address
range [0,1]. Combining these two facts implies the load-balance.

We note that the above scheme is highly efficient to implement in
the Chord P2P protocol, since one has direct access to the addresses
of successors in the address ring. Moreover, the protocol can also
function when nodes disappear without invoking a proper deletion
protocol. By having every node occasionally check whether they
should move, the system will eventually converge towards the ideal
state. This can be done with insignificant overhead as part of the
general maintenance protocols that have to run anyway to update
the routing information of the Chord protocol.

One (possibly) undesirable aspect of the above scheme is that
O(log logn) nodes change their address upon the insertion or dele-
tion of a node, because this will cause an O(log logn/n) fraction of
all items to be moved. However, since every node has only O(logn)
possible positions, it can cache the items stored at previous active
positions, and will eventually incur little data migration cost: when
returning to a previous location, it already knows about the items
stored there. Alternatively, if every real node activates O(log logn)
potential nodes instead of just 1, we can reduce the fraction of items
moved to O(1/n), which is optimal within a constant factor. This
is shown by a straightforward variation on our analysis, using the
fact that with loglogn activated nodes per real node, each move
only involves on average a 1/nlog logn fraction of the data. All
other performance characteristics are carried over from the origi-
nal scheme. It remains open to achieve O(1/n) data migration and
O(1) virtual nodes while attaining all the other metrics we have
achieved here.

3. ITEM BALANCING
We have shown how to balance the address space, but sometimes

this is not enough. Some applications, such as those aiming to sup-
port range-searching operations, need to specify a particular, non-
random mapping of items into the address space. In this section,
we consider a dynamic protocol that aims to balance load for arbi-
trary item distributions. To do so, we must sacrifice the previous
protocol’s restriction of each node to a small number of potential
node locations—instead, each node is free to migrate anywhere.
This is unavoidable: if each node is limited to a bounded number
of possible locations, then for any n nodes we can enumerate all
the places they might possibly land, take two adjacent ones, and
address all the items in between them: this assigns all the items to
one unfortunate node.

Our protocol is randomized, and relies on the underlying P2P
routing framework. (If the node distribution is very skewed, it
might be necessary to augment the routing infrastructure, see Sec-
tion 3.2.3 below.) The protocol is the following (where ε is any
constant with 0 < ε < 1/4). Recall that each node stores the items
whose addresses fall between the node’s address and its predeces-
sor’s address, and that � j denotes the load on node j . Here, the
index j runs from 1,2, . . . ,n in the order of the nodes in the address
space.

Item balancing: Each node i occasionally contacts another node
j at random. If �i ≤ ε� j or � j ≤ ε�i then the nodes perform a

load balancing operation (assume wlog that �i > � j), distin-
guishing two cases:

Case 1: i = j +1: In this case, i is the successor of j and the two
nodes handle adjacent address intervals. Node j increases its
address so that the (�i −� j)/2 items with lowest addresses in
i’s interval get reassigned from node i to node j . Both nodes
end up with load (�i + � j)/2.

Case 2: i �= j +1: If � j+1 > �i , then we set i := j + 1 and go to
case 1. Otherwise, node j moves between nodes i − 1 and i
to capture half of node i’s items. This means that node j’s
items are now handled by its former successor, node j +1.

This protocol also quickly balances the load, starting with an
arbitrary load distribution.

Lemma 2 Starting with an arbitrary load distribution, if every node
contacts O(logn) random nodes for the above protocol, then whp
all nodes will end up with a load of at most16

ε L. Another round of
everyone contacting O(logn) other nodes will also bring all loads
to at least ε

16 L.

Proof Sketch: Since the proof is similar to the one given for Theo-
rem 3 below, we only sketch the general outline. Consider one par-
ticular node with load at least 16

ε L. If this node contacts a random
node, then with probability at least 1/2 it will be able to enter in a
load exchange. Contacting Θ(logn) other nodes will therefore lead
to Θ(logn) load exchanges whp, each reducing the node’s load by
a constant factor. Thus, independent of the starting load, the final
load will be at most 16

ε L.
For the lower bound of the load, a similar argument applies. �

To state the performance of the protocol once a load balanced
state has been reached, we need the concept of a half-life [11],
which is the time it takes for half the nodes or half the items in
the system to arrive or depart.

Theorem 3 If each node contactsΩ(logn) other random nodes
per half-life as well as whenever its own load doubles or halves,
then the above protocol has the following properties.

(i) With high probability, the load of all nodes remains between
ε

16 L and 16
ε L.

(ii) The amortized number of items moved due to load balancing
is O(1) per item insertion or deletion, and O(L) per node
insertion or deletion.�

3.1 Proof of Theorem 3
For part (i), consider a node with load �. Suppose it enters a load

exchange with a node of load �′ ≤ ε�. Then the node’s load reduces
by a factor of at least

�
1
2 (�+ �′)

≥ �
1
2 (�+ε�)

=
2

1+ε
=: β.

Consider one particular node, whose load increases beyond 2
ε L.

We will show that its load will drop below 2
ε L before ever rising as

high as 16
ε L. For this it suffices if this node has logβ

16/ε
2/ε = logβ 8 =

Θ(1) successful load exchanges before its load increases to 16
ε L.

By Markov’s inequality, half the nodes have load at most 2L.
So if a node with load exceeding 2

ε L contacts a random node, then
with probability 1/2 it will enter a load exchange, and Θ(logn)
invocations of the protocol will lead to a load exchange whp. It

40

therefore suffices to invoke the protocol O(logn) times before the
load increases from 2

ε L to 16
ε L.

What can cause the load of a node to increase? First, the number
of items stored at the node can increase. Second, the value of L =
N/n can drop globally, either by a decrease of the number of items
in the system, or an increase of the number of nodes in the system.
The effective change in relative load of a node is the product of
these three effects. Thus, for the relative node to change by a factor
of 8 from 2

ε L to 16
ε L, at least one of the values has to change by a

factor of 2. So the update rate stated in the Theorem is sufficient to
maintain the claimed load-balance.

A similar argument yields a lower bound on the load of all nodes,
noting that the upper bound of 16

ε L on the load implies that a con-
stant fraction of all nodes have a load of at least L/2. This means
that a node with little load (i.e. less than ε

2 L load) is likely to con-
tact one of these nodes at random.

For part (ii), we use a potential function argument. We show
that item and node insertions and departures cause only limited
increases in the potential, while our balancing operation causes a
significant decrease in the potential if it is large. This potential
function is

Φ(�) := δ

(
n

∑
i=1

�i log�i −N logL

)
,

where δ is a sufficiently large constant, e.g. δ = 8. Recall that �i is
the load of node i, i.e. the number of items stored at the node (since
we are considering the unweighted case). Our potential function is
related to the entropy of the item distribution. More precisely, up to
an additive term independent of the item distribution, the potential
function is exactly the negative of the entropy. Thus, our function
gets minimized when all nodes have the same load.

The amortized cost of an operation (insertion, deletion, or load
exchange) will be its actual cost plus the resulting change in poten-
tial function, i.e. “amortized cost” = “actual cost” + Φafter−Φbefore.

Item insertion
The actual cost of inserting an item is 1, since the affected item has
to be handled. So the amortized cost of inserting an item at a node
j is

1+δ

(
∑
i �= j

�i log�i +(� j +1) log(� j +1)− (N +1) log
N+1

n

−∑
i

�i log�i +N log
N
n

)

= 1+δ
(

(� j +1) log(� j +1)− � j log� j +N log
N
n

−(N+1) log
N+1

n

)

= 1+δ

(
log(� j +1)+ log

(
� j +1

� j

)� j

− log
N
n

+ log

(
N/n

(N+1)/n

)N+1
)

= 1+δ

(
log(� j +1)+ log

(
1+

1
� j

)� j

− log
N
n

+ log

(
1− 1

N+1

)N+1
)

= 1+δ
(
log(� j +1)− log L +Θ(1)

)
= Θ

(
1+ log(� j +1)− logL

)
.

If � j = O(L), the cost reduces to O(1).

Item deletion
The actual cost of a deletion is 0, since no item has to be moved.
The change in potential is the negative of an item insertion’s, and
thus Θ(1− log � j + logL). This cost is O(1) since � j = Ω(L).

Node insertion
The actual cost of adding a new node is zero, as no items are moved.
The change in potential function (and therefore the amortized cost)
is

−δN log
N

n+1
+δN log

N
n

= δlog

(
n+1

n

)N

= δlog

(
1+

1
n

)Ln

= Θ(logeL) = Θ(L).

Node deletion
When deleting node j and moving its items to node k, we incur an
actual cost of � j items. The amortized cost of deleting a node is
therefore:

� j +δ

(
(� j + �k) log(� j + �k)− � j log� j − �k log�k

− log

(
1+

1
n

)Ln
)

= � j +δ· log

((
1+

�k

� j

)� j
(

1+
� j

�k

)�k
(

1+
1
n

)−Ln
)

= � j +Θ
(

log
(

e�ke� j e−L
))

= Θ(� j + �k−L).

If � j , �k = O(L), the amortized cost is O(L).

Load balancing operation
It remains to show that the expected amortized cost of a load ex-
change is negative. For this, we will need the assumption that
ε < 1/4.

Let us first consider the case i = j + 1. When moving items
from node i to node j , the initial loads on those nodes are �i and
� j , while both nodes will end up with a load of (�i + � j)/2. Thus,
(�i − � j)/2 items have to be moved, which is the actualcost of the
load exchange. The amortized cost therefore comes out to

�i − � j

2
+δ
(

2
�i + � j

2
log

�i + � j

2
− �i log�i − � j log� j

)
.

We have to show that this quantity is at most 0. For notational

simplicity, let η := � j
�i
≤ ε. Then we have the cost

�i
1−η

2
+δ
(
�i(1+η)(log�i + log(1+η)−1)

− �i log�i −η�i log(η�i)
)

41

= �i

(
1−η

2
+δ
(
(1+η) log �i +(1+η) log(1+η)− (1+η)

− log�i −η logη−η log �i

))

= �i

(
1−η

2
+δ
(
(1+η) log(1+η)−η log η− (1+η)

))

= �i

(
1−η

2
+δ
(

log(1+η)+ log

(
1+

1
η

)η
− (1+η)

))

≤ �i

(
1
2

+δ

(
(η +0.087)+ log

(
1+

1
1/2

)1/2

− (1+η)

))

≤ �i (0.5−0.12δ) ,

using η ≤ ε < 1/2. Thus, for δ > 4.17, we obtain that load ex-
changes are paid for by the drop in potential function.

The case i �= j + 1 involves the three nodes i, j and j + 1. To
simplify notation, we set x := �i , y := � j and z := � j+1. Recall that
we have y≤ εx and z≤ x.

The actual number of items moved is x/2+y. The three nodes’
contribution to the potential function is δ(xlogx+ ylogy+ zlogz)
before the update, and

δ
(x

2
log

x
2

+
x
2

log
x
2

+(y+z) log(y+z)
)

after the update. So the change in potential function is

∆Φ = δ
(

2
x
2

log
x
2

+(y+z) log(y+z)− (xlogx+ylogy+zlogz)
)

= δ
(
−x+(y+z) log(y+z)−ylog y−zlog z

)
.

Note that the function f (y,z) := (y+z) log(y+z)−ylogy−zlogz
is increasing in y and z for y,z≥ 0, since

1
∂y

f = log(y+z)− logy≥ 0

(and likewise 1
∂z f ≥ 0 by symmetry).

Thus, the cost of the load balancing operation gets maximized
for y = εx, and z= x. The maximal amortized cost therefore is

x
2

+y+δ
(
−x+ f (εx,x)

)
=

x
2

+y+xδ
(
−1+(1+ε) log((1+ε)x)−ε log(εx)− logx

)
=

x
2

+y+xδ
(
−1+(1+ε) log(1+ε)−ε logε

)

=
x
2

+y+xδ
(
−1+ log(1+ε)+ log

(
1+

1
ε

)ε)

≤ x

(
3
4

+δ
(
−1+ log

5
4

+ log 4
√

5

))
≤ x(0.75−0.0975δ) .

This is less than 0 if δ> 7.7. �

3.2 Discussion
The traffic caused by the update queries necessary for the proto-

col is sufficiently small that it can be buried within the maintenance
traffic necessary to keep the P2P network alive. (Contacting a ran-
dom node for load information only uses a tiny message, and does
not result in any data transfers per se.) Of greater importance for
practical use is the number of items transferred, which is optimal
to within constants in an amortized sense.

The protocol can also be used if items are replicated to improve
fault-tolerance, e.g. when an item is stored not only on the node pri-
marily responsible for it, but also on the O(logn) following nodes.
In that setting, the load � j refers only to the number of items for
which a node j is primarily responsible. Since the item movement
cost of our protocol as well as the optimum increase by a factor of
O(logn), our scheme remains optimal within a constant factor.

3.2.1 Selecting Random Nodes
A crucial step in our protocol is the ability to be able to contact

a random node in the P2P network. This is easy to achieve if the
nodes are (almost) uniformly distributed in the address space: we
pick an address uniformly at random, and then contact the node
succeeding that address. The probability of selecting a node is
equal to the fraction of address space spanned by it. It can be shown
that our analysis still holds if all these probabilities are within a
constant factor of 1

n .
If the node distribution is skewed, then we have to employ a dif-

ferent scheme. One solution is that every node maintains an addi-
tional presence (i.e. virtual node) on the address ring. This virtual
node is not used for storing items (i.e. does not take part in the
item balancing protocol), its sole purpose is to be contacted for the
random node selection. Using a balancing protocol such the one
in Section 2 to distribute these virtual nodes evenly in the address
space, we can again select a random node by choosing a random
address and returning the virtual node following it.

Another solution for skewed node distributions is the use of the
random skip list which we might also use for routing (see Sec-
tion 3.2.3 below). Selecting a random element in such a data struc-
ture is a relatively straightforward task.

3.2.2 Weighted Items
In many circumstances, items stored in a P2P networks are not

all equal in terms of the load they put on the hosting node. For
example, items might have different sizes, so storing a larger items
requires more disk space, or the popularity of items can differ, with
some items being requested more often, leading to a higher I/O load
on the hosting node.

We can model this by assigning a weight w(x) to every item x. It
turns out that our load balancing algorithm also works for the case
where the load is defined as the sum of item weights, as opposed to
the number of items stored at a node. There is one obvious restric-
tion: load will be balanced only up to what the items themselves
allow locally. As an example consider two nodes, one node stor-
ing a single item with weight 1, the other node a single item with
weight 100. If these two nodes enter in a load exchange, then there
is no exchange of items what will equalize the two loads.

Apart from this restriction, all the above analysis carries over to
the weighted case, by simply treating an item with weight w as w
items of weight 1.

Corollary 4 Theorem 3 continues to hold for weighted items, with
the following changes:

(i) Load can be balanced only up to what the items’ weights al-
low locally (see previous discussion).

(ii) The amortized total weight moved upon the insertion or dele-
tion of an item with weight w is O(w). �

3.2.3 Routing in Skewed Distributions
If the node distribution in the address space is very skewed, e.g.

with very dense or adversarial clusterings of nodes, then Chord’s
routing is not guaranteed to take only O(logn) hops. Since for

42

our protocol the node distribution mirrors the item distribution, this
possibility cannot be excluded a priori. In such a case, an alternate
routing infrastructure has to be created to retain the O(logn) hop
routing guarantee. One possibility is to use a random skip list: the
skip list is directed around the address ring, and nodes insert them-
selves at their active address with randomly chosen levels, where
the probability of choosing higher levels decreases geometrically.
For independent choices of levels, this retains the O(logn) whp
routing guarantee of basic Chord, but works for arbitrary distribu-
tions of nodes in the address space.

3.2.4 Range Searches
Our protocol can provide load balance even for data that cannot

be hashed. In particular, given an ordered data set, we may wish
to map it to the [0,1) interval in an order-preserving fashion. Our
protocol then supports the implementation of a range search data
structure. Given a query key, we can use Chord’s standard lookup
function (or the routing structure described in Section 3.2.3) to find
the first item following that key in the keys’ defined order. Fur-
thermore, given items a and b, the data structure can follow node
successor pointers to return all items x stored in the system that
satisfy a≤ x ≤ b. Since all nodes have a load of Θ(L), we obtain
the first such protocol that achieves an O(logn+K/L) query time
(where K is the size of the output).

4. CONCLUSION
We have given several provably efficient load balancing proto-

cols for distributed data storage in P2P systems. Our algorithms
are simple and easy to implement, so an obvious next research step
should be a practical evaluation of these schemes. In addition, three
concrete open problems follow from our work. First, it might be
possible to further improve the consistent hashing scheme as dis-
cussed in Section 2.2. Second, it would be interesting to determine
whether our item balancing protocol also works for the case where
the cost of storing an item is node-dependent, e.g. because some
nodes have greater storage capacity or bandwidth than others. And
finally, our range search data structure does not easily generalize
to more than one order. For example when storing music files, one
might want to index them by both artist and year, allowing range
queries according to both orderings. Since our protocol rearranges
the items according to the ordering, doing this for two orderings at
the same time seems difficult. A simple solution is to rearrange not
the items themselves, but just store pointers to them on the nodes.
This requires far less storage, and makes it possible to maintain
two or more orderings at once. It is open how to solve this problem
without such an added level of indirection.

Acknowledgments
We would like to thank the anonymous reviewers for their helpful
comments.

5. REFERENCES
[1] M. Adler, E. Halperin, R. M. Karp, and V. V. Vazirani. A

Stochastic Process on the Hypercube with Applications to
Peer-to-Peer Networks. In Proceedings STOC, pages
575–584, June 2003.

[2] A. Anagnostopoulos, A. Kirsch, and E. Upfal. Stability and
Efficiency of a Random Local Load Balancing Protocol. In
Proceedings FOCS, pages 472–481, Oct. 2003.

[3] J. Aspnes and G. Shah. Skip Graphs. In Proceedings SODA,
pages 384–393, Jan. 2003.

[4] P. Ganesan and M. Bawa. Distributed Balanced Tables: Not
Making a Hash of it all. Technical Report 2003-71, Stanford
University, Database Group, Nov. 2003.

[5] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo,
S. Shenker, and I. Stoica. Complex Queries in DHT-based
Peer-to-Peer Networks. In Proceedings IPTPS, pages
242–250, Mar. 2002.

[6] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with PIER.
In Proceedings VLDB, pages 321–332, Sept. 2003.

[7] F. Kaashoek and D. R. Karger. Koorde: A Simple
Degree-optimal Hash Table. In Proceedings IPTPS, Feb.
2003.

[8] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent Hashing and Random Trees:
Tools for Relieving Hot Spots on the World Wide Web. In
Proceedings STOC, pages 654–663, May 1997.

[9] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. OceanStore: An
Architecture for Global-Scale Persistent Storage. In
Proceedings ASPLOS, pages 190–201, Nov. 2000.

[10] D. M. Lewin. Consistent Hashing and Random Trees:
Algorithms for Caching in Distributed Networks. Master’s
thesis, Massachusetts Institute of Technology, May 1998.

[11] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis
of the Evolution of Peer-to-Peer Systems. In Proceedings
PODC, pages 233–242, July 2002.

[12] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable
and Dynamic Emulation of the Butterfly. In Proceedings
PODC, pages 183–192, July 2002.

[13] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-peer
Information System Based on the XOR Metric. In
Proceedings IPTPS, pages 53–65, Mar. 2002.

[14] M. Naor and U. Wieder. Novel Architectures for P2P
Applications: the Continuous-Discrete Approach. In
Proceedings SPAA, pages 50–59, June 2003.

[15] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load Balancing in Structured P2P Systems. In
Proceedings IPTPS, Feb. 2003.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
Proceedings ACM SIGCOMM, pages 161–172, Aug. 2001.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In Proceedings IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pages
329–350, Nov. 2001.

[18] M. Ruhl. Efficient Algorithms for New Computational
Models. PhD thesis, Massachusetts Institute of Technology,
Sept. 2003.

[19] J. P. Schmidt, A. Siegel, and A. Srinivasan.
Chernoff-Hoeffding bounds for applications with limited
independence. In Proceedings SODA, pages 331–340, Jan.
1993.

[20] R. G. Seidel and C. R. Aragon. Randomized Search Trees.
Algorithmica, 16(4/5):464–497, Oct./Nov. 1996.

[21] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In Proceedings ACM
SIGCOMM, pages 149–160, Aug. 2001.

43

